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The investigation is concerned with dynamic phenomena at the free end of a flexible fiber.
A mathematical and energy basis is given for the sudden increase in velocity of points in
the neighborhood of the fiber tip.

Consider a flexible, inextensible fiber (a little chain) with a uniferm mass distribution
along its length [ and having its upper end fixed and its lower end free.

Confining ourselves to small in-plane deflections of the fiber from its vertical position,

we obtain the equation
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Here v is the horizontal deflection of points; ! is the fiber length; s is the running coor-
dinate along the fiber; and ¢ is time.
The initial and boundary conditions for (1) take the form
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The last condition is an expression of the moment of momentum theorem for the fiber with

respect to its point of suspension, for small horizontal deflections.
The solution of (1) may be written in the form
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Here ]0 and No are Bessel functions of the first and second kind; the constants 4, and
B, are determined by initial conditions while the constants C ., C,, and @, are determined
from the boundary conditions.

However, it is easily seen from (3) that v » o for s -  unless all C,, are equal to zero,
since N, (@) + o for 0 + 0, and therefore (3) violates the original assumption of small v.

In [1 , the additional requirement was imposed that v and all its derivatives be finite in
the region 0 < s < [, thus leading to the Fq. C,, = 0, but the last condition in (2) was ig-
nored. In other words, the solution was obtained within a narrower class of functions,
which was completely correct mathematically, but did not completely satisfy the physical
conditions of the problem.

Indeed, by means of such a solution it is impossible to explain, for example, the emer-
gence of supersonic velocities at the fiber tip (the whip crack) which may occur even for
small disturbances at the point of suspension. At the same time, the utilization of the last
Eq. in (2) instead of boundedness requirements leads to an important qualitative conclusion

@ >8>0 for f,(s) >0, i =0 (0<s< ) (4)
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where & is a fixed number such that if (4) would imply v{{} » 0, then this would occur in
(3) under the conditions of (2).

Hence, the linearized problem for a suspended fiber leads to infinite solutions at the
tip, because the corresponding nonlinear problem is incorrect in the region 0L s K ; in
other words, arbitrarily small disturbances at the point of suspension may lead to sufficient-
ly large disturbances (in particular, velocities) at the free end.

Consider the above phenomenon from an energy point of view. Suppose that an isolated
transverse wave of small amplitude were generated at the point of suspension {for example,
as a result of a discontinuous horizonta] displacement of the suspension point followed by
its return to the original position after a time ¢y). We will assume that prior to the occur-
rence of this wave the fiber was at rest in a vertical position.

The total mechanical energy in the fiber is given in this case by Expression
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where s; and s, are the coordinates of the leading and trailing wave fronts.
Noting that in the undistarbed state
T=gp(l—3 (6

where T' is the tension in the fiber and considering that v and its derivatives are amall,
we obtain for the propagation velocities of the leading and trailing wave fronts the Formu-

las ds dsy o
-af=A1=Vg(l—sl). W=M=Vg(l—-ss) (7)
Clearly,
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and consequently
As=sy— sg =2t (¥ gl — Yagt) (9
It is not difficult to calculate the time interval ¢4 for the wave to reach the free end
t, =2 Vm (10}

From (9) and (10} it follows that As - 0 for t -+ te. Then, sufficiently close to the fiber
tip, (5) may be approximated by
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Here [Av/3t)? and [Av/3s]? are the squares of the jumps averaged over As.
Noting that at the front of a strongly discontinuous wave of inextensible fiber the rela-
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holds, where A is the velocity of propagation of the wave front, then (11) yields Eq ~ plov/
At]12As and, consequently,

av e
[‘a’{] - VEI)/PA-"—’ oo for t—t, (12)

where (12) holds for sufficiently small £,

Thus, as the isolated wave approaches the free end of the fiber, the length of the wave
approaches zero (since the velocity of the trailing wave front is always greater than that
of the leading wave front) and the energy £, is concentrated in an infinitesimal segment of
the fiber adjoining the free end, so that the velocity of that end tends to infinity.

Naturally, this result cannot yield any quantitative information with regard to the pheno-
menon under investigation, since the solution (3} and conditions (2) are based on the sssump~
tion that v and Jv/0t are small. However, in this case the similarity between the physical
phenomena in the linear and nonlinear cases is very clear. Indeed, for large v and Ov/0t
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the tension in the fiber above the wave will be greater than below it {(even though this ten-
sion may no longer be subject to relation (6)) and, consequently, the velocity of the trail
ing front will always be greater than that of the leading front. Moreover, even in the non-
linear case T (I, t) = 0, i.e. the velocity of the leading front will approach zero. Thus, the
concentration of all mechanical energy in a small segment near the free e nd will occur in
the nonlinear case as well, which leads to the sharp increases in the fiber tip velocities
actually observed for sufficiently small disturbances,

The foregoing considerations show that artificial conditions guaranteeing the correct-
ness in a problem do not always reflect the true physical occurrence; in the case at hand,
the incorrect solutions reflect the physical phenomena in a fiber better than the correct
ones,
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